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We shall consider a three-dimensional flow past a smooth body, of a turbulent stream of an 
ideal gas. We assume that a critical streamline exists which branches in all directions at 
the isolated stagnation point 0 on the surface of the body, so that in the sufficiently small 
neighborhood of 0, the whole surface is covered with streamlines is+t~ from this point. We 
introduce a coordinate system connected with the tubes of flow near both; the critical stre- 
amline and the surface of the body. 

Let W be a plane normal to the critical streamline at the point A, different from 0. We 
shall produce in this plane a family of circles with a common center at A, and we shall as- 

sume that stream tubes peeeing through these cir- 
cles form a coordinate family ul. On the plane IV 
we have uq = r, where r is the radius of a circle 
giving rise to u2. When r= 0, then the stream 
tube u1 consists of the surface of the body toge- 
ther with the critical streamline. 

Fig. 1 

Let us draw on the enrface of the body in euf- 
ficiently small neighborhood of 0, a closed con- 
tour L intersecting each streamline issuing from 
0 once only (point 0 is situated on the surface of 
the body, inside ~5). Through each point of the 
contour L, we shall draw a curve N touching nei- 
ther the streamlines, nor the surface of the body. 
We shall call the stream tubes passing through 
the family of curves N, a coordinate family us, 

The only requirement imposed on ut (which is 
not a family of stream tubes) is that one of the 
surfaces of this family, namely the one which pas- 

see through A should, at this point, make contact 
with the plane W, and that this point of contact is of sufficiently high order. 

Let the constructed coordinate system be triply orthogonal at some arbitrary point B on 
the surface of the body. We shall denote by F a line, uJ = const, on I. All F intersect at 
the point A, forming a knot, since each surface uJ is continuous and contains a streamline 
issuing from the critical streamline at the point 0. It is easy to establish that the type of 
this knot does not depend on the choice of curves N defining the directions of us. For def- 
initeness we shall assume that all N are orthogonal to the surface of the body. 

Derivatives in the directions of the lines of intersection of surfaces u2 and u3, u1 and 

ug,~l andus shall be denoted by 

+J The author had learned that a related problem was investigated by M.D. Ladyzhenekii. 
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where h, are Lamb coefficients. 
Equation of continuity which asauma~ the form of a Law of Conservation of Mass for an 

elementary stream tube fotmed by the surfaces u,, u, + du2, uj and u3 + du3, has the 
form 

q (h) kh, 1 sin p cos y 1 = G ( us, u& q (h) = h [1/2 (k + i) - ‘/z h2 (k - l)]“(k-L) (1) 

Here x is the velocity coefficient, y is au angle between the normal to u t and the velo- 
city vector, @ is an angle formed between the lines of intersection of up and u s with u, 
while G (uZ, uJ) is an arbitrary function which characterises the outflow of gas through an 
elementary stream tube and which depends on the choice of ur and u3 

Forming a scalar product of Eq. (V. 9 fV + ~“9 p = 0 with a unit vector 5 normal to a2 
and with a unit vector 7of the notmal to a streamline and tangent to u2 we obtain8 using the 
Bernoulli‘s equation and the condition of isentropy. 

a1n h 1. as 8 in h I as (2) 
%I --,n---- k&Ma an ’ V.= -P-Y- 

7 az kHM2 dt 

where X, and X, are the normal and geodesic curvature of a streamline on uz, a/dn and 
d/a 7 denote partial derivatives in the II and T direction and k is the adiabatic index. While 
deriving (Z), we have assumed without any loss of generality that the stagnation tempera- 
ture was constant throughout the flow. 

At a point B on a body surface where the coordinate system is tri-orthogonal, Eqs. (2) 
become 

i3Inh 1 as ahla 
x73 ---z---- x, = -- 

RRM” asa I 3% 
(3) 

since by a previous assumption of existence of a critical streamline, entropy is constant on 
the bad 

B 
surface. As S = S (u 

as as/ 
, u 3 ), the derivative dS/d a 2 can, at the point B, be written 

st in the direction o?a corresponding line F at A. Using (1) we obtain 
as 

-I 

do A, IA as [q (A) MB 
asa fj = K A ha IB Ei aSa A [q 04 hs sin PIA I- 

(4) 

The fact that a knot is formed by the curves F at A implies, that on W, Lame’s coeffic- 
ients h, + 0 as u 
on the surface of 

+ 0. At the same time us can always be relabelled so as to have h, f 0 
b e body. 

We can assume without loss of generality that X f 0 at B. Since the normal curvature of 
streamlines on the surface of a smooth body is limited, it follows from (31 and (4) that the 
necessary condition for a derivative dA.@n on the surface of a body to be bounded is that 
the derivative d S/ds 3 in the direction F becomes equal to zero at A. 

Since B is arbitrary, the derivative %/as 
F towards the point A. If the node of lines P 

should become zero on translation along any 
resembles (or partially resembles) a star, then 

the necessary condition for %/&I to be bounded on the surface of the body is, that the nec- 
essary conditions of existence of an extremum of entropy hold at the point A. The same con- 
clusion is reached when the node is not star-shaped, provided that all the lines F have no 
point of contact with the sarface, S = const at A. 

Wt shall now assume that the node of lines F at A is not starshaped and that a certain 
direction from this node (all lines F belonging to some pencil of lines, are tangent to this 
direction) touches the surface S = const passing through A. Let us now introduce, on the 
plane g, a Cartesian coordinate system xAy in which the direction of the Ax-axis coincides 
with the direction described in tbe last sentence. 

Suppose a family of curves F on the plane W is given by F = F(z, y). On translation a- 
long any curve F which does not coincide with the Ax-axis in the direction towards A, we 
have 

F.%+ =J, F,-, 00, dy / dx = - F, J F, + 0 (5) 

where x and y are coordinates of a point on F. 
Lnme coefficient A, at a point C on F and sufficiently near to A, is given by 

1 
‘,=IVFIsine=~(f $- $)y’(1 - ~~jJ’* (6) 

where fi is the angle between the curves F = const and ur = consty at the point C. 
ln the sufficiently near vicinity of A on F I const we shall have y/x-~ 0 as C-+ A, comae- 

quently, when point C moves along F = const towards A, then the Lame coefficient li, de- 
creases as l/F,. 
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The derivative dS/ds2 in the direction of F at C, can be written as 

Let the derivatives S, and S,, be continuous in some neighborhood of A, and 

8, = 0 P), s, = s, IA + 0 (G), r = (r2 + y2)“B (6 > 0, E > 0) (8) 
Substituting (8) into (7) we obtain 

&S 
-C 

8, IA F, + F,O tr’) 4 FXO (r&j (9) 
@se I’-F,z + F,, 

The derivative %/i)s2 at the point B is then given, in accordance with (51, (6) and (91, 

by 
1 as 4 (ill,) 1 &S q @B) 

-I 
h, IB &I B 

=- 
q (AA) pYA .hssinpaso I I c 

= - lim [ $,O (r’) -f- A’?, fA F,] c 
q thA) C-r-A 

We easily see that the expression in square brackets can be bounded only on an isola- 
ted curve F = const. Therefore, if Sr f 0 at R, then, on approaching B along the surface u3 
the derivative dSf&, + 00 at least as fast as F, /,= when approaching point A along the cor- 
responding curve F. 

Thus we have in fact shown that, if a segment exists near 0 on the surface of the body 
which includes more than one streamline and on which &!/&I is bounded, then necessary 
conditions for existence of an extremal value of entropy hold on the critical streamline. 

If, on the other hand, these conditions are not fulfilled on the critical streamline, then 
the derivatives &/I% and dS/&r become infinite almost everywhere on the surface of the 
body with the exception of isolated streamlines on which &V&J and ~~/~ change their sign. 

This means that the surface of the body is an envelope of surfaces A= conat almost every- 

where. 
Indeed, conditions limiting the velocity hGd(k + l)/(k - 

dh/as 
1) implies that points at which 

become infinite in the direction of the streamlines, are isolated on the streamline. 
Condi:ion limiting the angles of inclination of the velocity vector imply, that points at 
which the geodesic curvature of streamlines on the surface of the body becomes infinite, 
are also isolated on a streamline. Hence it follows from (3) that points at which &%v~ = w 
are also isolates on a streamline. 

The manner in which the surfaces h= conat touch the surface of the body, will be depen- 
dent on the sign of &q/&r on the body surface: either the surface h= const is tangent to the 
direction of a streamline approaching 0, or it is tan ent to the direction of a streamline de- 
parting from 0. On the streamlines along which iB/ Jr changes its sign, the character of the 
contact changes occurs; tlte surfaces X = conat a& not smooth along these streamlines. 

In conclusion we note that the fulfillment on the critical streamline of the necessary con- 
ditions of existence of extremaf values of entropy is not, in general, a sufficient condition 
for the boundedness of the derivatives B/h and ah/&r on the surface of the body. As an 
example, we. shall qoote the case of an axisymmetrfc, turbulent, anbsonic flow past a body. 
In this flow entropy near the critical streamline at an infinite distance from the body (where 
the flow is rectilinear), obeys the law S = Y s where Y is the ordinate of a streamline at in- 
finity and ‘I <a < 2. We can easily see that in this case the derivative %/as, tends to in- 
finity like Y ag2 as it approaches the body (i.e. as Y + 0). 

Translated by L.K. 


